Fachartikel: Detektion mit Ultraschall

Ultraschallsensoren erfassen berührungslos und verschleißfrei eine Vielzahl an Objekten mit unterschiedlichen Eigenschaften. Nach welchen Funktionsprinzipien arbeiten solche Lösungen und welche Vorteile, aber auch Herausforderungen, ergeben sich hieraus in der Praxis?
Ultraschallsensoren sind vielseitig einsetzbar, denn weder Form, Farbe noch Transparenz eines Materials oder Objektes beeinflussen das Schallverhalten und somit die Funktionsweise.
Ultraschallsensoren sind vielseitig einsetzbar, denn weder Form, Farbe noch Transparenz eines Materials oder Objektes beeinflussen das Schallverhalten und somit die Funktionsweise.Bild: IPF Electronic GmbH

Was haben die Geschwister Curie und die Titanic gemeinsam? Sie vereint das Thema Ultraschall. Ende des 19. Jahrhunderts erzeugten die Geschwister Curie erstmals Ultraschall mithilfe des Piezo-Effekts in Kristallen. Die Titanic-Katastrophe hingegen führte zu ersten konkreten Lösungen im Bereich Ultraschall. Weil zur damaligen Zeit die Gefahr von Eisbergen auf See nicht rechtzeitig erkannt werden konnte, erfanden unabhängig voneinander der englische Mathematiker Lewis Richardson und der deutsche Physiker Alexander Behm Anfang des 20. Jahrhunderts mit dem Sonar und Echolot auf Ultraschall basierende Systeme zur Abstandsmessung im Wasser.

Alternative zu optischen Sensoren

Ultraschallsensoren eignen sich unabhängig vom jeweiligen Funktionsprinzip generell für Umgebungsbedingungen mit hoher Staub- bzw. Schmutzbelastung, sofern sich solche Ablagerungen im Bereich der Sensorflächen in Grenzen halten. Zumeist sind sie daher optischen Sensoren in solchen Einsatzbereichen überlegen. Auch Form, Farbe oder Transparenz eines Materials bzw. Objektes üben keinen Einfluss auf das Schallverhalten und somit die Funktionsweise von Ultraschallsensoren aus.

Links zwei Ultraschalltaster als Gewindegeräte, die in einem Temperaturbereich von -25°C bis +70°C einsetzbar sind (Schaltabstände von 200mm bis 6m), rechts eine Ultraschallreflexschranke für einen Einsatztemperaturbereich zwischen -10°C und +60°C. Die aktiven Flächen bestehen bei allen Sensoren aus Kunststoff.
Links zwei Ultraschalltaster als Gewindegeräte, die in einem Temperaturbereich von -25°C bis +70°C einsetzbar sind (Schaltabstände von 200mm bis 6m), rechts eine Ultraschallreflexschranke für einen Einsatztemperaturbereich zwischen -10°C und +60°C. Die aktiven Flächen bestehen bei allen Sensoren aus Kunststoff.Bild: IPF Electronic GmbH

Schallabsorbierende Materialien können indes die Reichweite der Sensoren verringern. Überdies sind bei der Montage Einbaulagen zu vermeiden, die zu übermäßigen Ablagerungen von Schmutz oder Nässe auf der Sensorfläche, dem sogenannten Schallwandler, führen. Gemäß ihrer Funktionsweise lassen sich Ultraschallsensoren einteilen in Ultraschalltaster, -reflexschranken, -schranken und -gabeln.

Aufgepasst bei Konvektionswärme

Ultraschalltaster senden zyklisch einen kurzen, hochfrequenten Schallimpuls aus, der sich mit einer Geschwindigkeit von 343m/s bei +20°C Umgebungstemperatur in der Luft fortpflanzt. Trifft der Impuls auf ein Objekt, wird er reflektiert und gelangt als Echo zurück zum Geräteempfänger. Der im Sensor integrierte Schallwandler übernimmt hierbei die Funktion des Senders und Empfängers. Aus der Zeit, die der Schallimpuls vom Aussenden bis zum Empfangen des Echos benötigt, lässt sich die Entfernung eines Objektes zum Taster bestimmen (Laufzeitmessung).

Ultraschalltaster lassen sich universell anwenden (v.l.): Füllstandüberwachung, Schlaufenregelung (z. B. zur Steuerung der Materialspannung 
von Folien oder Metallbändern), Erfassen durchsichtiger Glasbehälter, Durchmessererfassung von Coils, Vollständigkeitskontrolle von Objekten in Gebinden, Anwesenheitskontrolle (z. B. in der Verpackungsindustrie), Personenerkennung.
Ultraschalltaster lassen sich universell anwenden (v.l.): Füllstandüberwachung, Schlaufenregelung (z. B. zur Steuerung der Materialspannung von Folien oder Metallbändern), Erfassen durchsichtiger Glasbehälter, Durchmessererfassung von Coils, Vollständigkeitskontrolle von Objekten in Gebinden, Anwesenheitskontrolle (z. B. in der Verpackungsindustrie), Personenerkennung.Bild: IPF Electronic GmbH

Ultraschalltaster sind vielseitig einsetzbar, wobei jedoch äußere Faktoren deren Funktionsweise beeinflussen können. So sind Abfragen auf heißen Objekten (flüssig oder fest) nur bedingt oder gar nicht möglich, da die Geschwindigkeit, mit der sich der Schall ausbreitet, von der Lufttemperatur abhängt. Auch der Einsatz nahe Druckluftdüsen ist nicht unkritisch, da die starke Luftbewegung vor den Düsen das Schaltsignal quasi „wegblasen“ kann. Sind Objekte mit ebenen oder gewölbten Oberflächen zu detektieren, muss deren Lage in Bezug auf den Ultraschalltaster gewährleisten, dass das reflektierte Schallsignal den Sensor wieder erreicht.

Lösungen für undefinierte Objektlagen

Ultraschallreflexschranken arbeiten mit einem beliebigen, schallreflektierenden Gegenstand (z.B. Maschinenteil, Führungsschiene eines Transportbandes) als Referenzfläche, die sich als ortsgebundener Reflektor in Sensorreichweite befinden muss. Gelangt ein Objekt zwischen Sensor und Reflektor, ändert sich die Laufzeit des Schalls in Bezug auf das zuvor definierte Schallsignal. Der Schaltausgang des Sensors wechselt daraufhin sein Signal.

Schlechte Schallreflexionssignale von ungünstig positionierten Bauteilen bzw. Objektgeometrien (l.) oder eine nachteilige Winkellage bei Objekten (r.) beeinflussen nicht die Funktionsweise von Ultraschallreflexschranken.
Schlechte Schallreflexionssignale von ungünstig positionierten Bauteilen bzw. Objektgeometrien (l.) oder eine nachteilige Winkellage bei Objekten (r.) beeinflussen nicht die Funktionsweise von Ultraschallreflexschranken.Bild: IPF Electronic GmbH

Solche Lösungen eignen sich beispielsweise für alle Anwendungen, in denen nicht genau bekannt ist, an welcher Stelle ein Gegenstand in den Erfassungsbereich der Reflexschranke gelangt. Außerdem bietet das Funktionsprinzip der Ultraschallreflexschranken in Applikationen Vorteile, in denen zylindrische Objekte mit stark differierender Winkellage zu erfassen sind. Steht indes keine Referenzfläche für den Sensor zur Verfügung, empfiehlt sich der Einsatz von Ultraschallschranken.

Ideal für besonders schnelle Prozesse

Als Einweg-Schrankensysteme bestehen solche Geräte aus einem separaten Sender und Empfänger. Aufgrund ihrer hohen Schaltfrequenz von 150Hz kommen Ultraschallschranken bevorzugt in Prozessen zum Einsatz, in denen Objekte den Erfassungsbereich des Ultraschallsystems mit hoher Geschwindigkeit passieren. Sie eignen sich überdies zur Detektion besonders dünner Materialien, etwa Folien. Allerdings ist hierbei darauf zu achten, dass das Material im Erfassungsbereich des Sensors gespannt ist, da ansonsten das Schallsignal das Material in Schwingungen versetzt. Bei Einweg-Schrankensystemen müssen Sender und Empfänger exakt zueinander ausgerichtet werden. Ein Aufwand, der bei Ultraschallgabeln, deren Funktionsweise sich nicht wesentlich von Ultraschallschranken unterscheidet, entfällt.

All-in-One für den sofortigen Einsatz

Ultraschallgabeln integrieren Sender und Empfänger in einer kompakten Einheit. Die potenziellen Einsatzfelder sind durch die jeweiligen Gabelweiten und daher möglichen Erfassungsbereiche limitiert. Ultraschallgabeln verfügen ebenfalls über eine hohe Schaltfrequenz und bieten sich zudem als Alternative zu optischen Gabellichtschranken an, etwa wenn sich in einem Produktionsprozess nach einer definierten Zeit die Eigenschaften der zu detektierenden Objekte ändern und die Teile z.B. transparenter werden.

Wissenswertes

Schallwandler von Ultraschalltastern fungieren sowohl als Sender als auch Empfänger und verursachen somit eine Blind- oder Totzone, innerhalb der ein Objekt nicht erfasst wird. Während der Wandler als Sender arbeitet, kann er kein Echosignal empfangen. Objekte, die sich besonders nahe und im „Empfangsschatten“ des Sensors befinden, werden daher nicht erkannt. Ultraschallreflexschranken haben keine Totzone. Objekte lassen sich mit solchen Systemen somit auch aus kurzen Distanzen detektieren.

www.ipf.de

Autor: Dipl.-Ing. (FH) Christian Fiebach, Geschäftsführer der ipf electronic gmbh in Altena.

Das könnte Sie auch Interessieren

Bild: Trumpf Gruppe
Bild: Trumpf Gruppe
AM4industry auf der Rapid.Tech 3D

AM4industry auf der Rapid.Tech 3D

Die Rapid.Tech 3D startet vom 14. bis zum 16. Mai 2024 in ihre 20. Auflage. Das Forum AM4industry steht am Eröffnungstag dabei erstmals auf dem Programm. Initiator und Organisator ist die Arbeitsgemeinschaft Additive Manufacturing (AM) des Verbandes Deutscher Maschinen- und Anlagenbau. Die VDMA-Arbeitsgemeinschaft hat zudem die ideelle Trägerschaft der Fachveranstaltung übernommen.

Bild: Arno Werkzeuge - Karl-Heinz Arnold GmbH
Bild: Arno Werkzeuge - Karl-Heinz Arnold GmbH
Universelle Werkzeuge für komplexe Fertigungsaufgaben

Universelle Werkzeuge für komplexe Fertigungsaufgaben

Wenn es beim Fräsen mal weniger um Großserien geht, entscheiden andere Kriterien als Standzeit oder Vorschubgeschwindigkeit über die Wirtschaftlichkeit der Werkzeuge. Und wer den Maschinenbau allumfassend bedient, wünscht sich neben flexiblen Universalwerkzeugen auch fachkompetente Prozessberatung. Bei Kneer Mechanik befindet sich mit Arno Werkzeuge seit Jahren dafür der passende Partner an Bord.

Bild: ©romaset/iStock.com / Rhenus Lub GmbH & Co. KG
Bild: ©romaset/iStock.com / Rhenus Lub GmbH & Co. KG
Mehr Nachhaltigkeit in der Fertigung dank neuem Kühlschmierstoff

Mehr Nachhaltigkeit in der Fertigung dank neuem Kühlschmierstoff

Mit rhenus XT 85 Green setzt Rhenus Lub aus Mönchengladbach einen neuen Standard in Sachen Nachhaltigkeit. Der biologisch abbaubare Kühlschmierstoff (KSS) ist eine leistungsstarke Alternative für alle Metallbearbeiter, die besonderen Wert auf nachhaltigere Produkte legen. Mit über 85 Prozent enthält das Produkt einen hohen Anteil an biogenem Kohlenstoff. Der Vorteil: Das Konzept nutzt CO2 als aktiven Gestaltungsbaustein.

Bild: Gebr. Heller Maschinenfabrik GmbH
Bild: Gebr. Heller Maschinenfabrik GmbH
130 Jahre Werkzeuge und Maschinenfabrik

130 Jahre Werkzeuge und Maschinenfabrik

Hermann Heller eröffnete 1894 in Nürtingen ein Handelsgeschäft und eine Fabrikation für geschützte Artikel sowie Uhrmacherwerkzeuge. Mit dem Vertrieb von Werkzeugen aller Art legte der Techniker den Grundstein für den langfristigen Erfolg. Der Einstieg in den Maschinenbau gelang 1898 mit der Produktion von Kaltkreissägen zum Sägen von Metallen sowie der Fertigung von Sägeblattschärfmaschinen und Gewindeschneidapparaten.

Bild: RX Austria & Germany/FRB Media/Fabbro
Bild: RX Austria & Germany/FRB Media/Fabbro
Fachmesseduo für die Metallverarbeitung

Fachmesseduo für die Metallverarbeitung

Vom 23. bis zum 26. April 2024 wird die Messe Wels in Österreich zum Anlaufpunkt für die metallverarbeitende Industrie: Der erstmalige Zusammenschluss der beiden Fachmessen Intertool & Schweissen schafft eine einzigartige Plattform sowohl für Industriekonzerne als auch für kleine und mittlere Gewerbebetriebe. Hochkarätige Aussteller präsentieren ihre Innovationen für die gesamte Produktionskette von der Konstruktion über die Fertigung bis hin zur Auslieferung. Parallel dazu findet auf drei Bühnen Wissenstransfer auf hohem Niveau statt.