Fachbericht: Maschinen fehlerlos einfahren

Bei steigender Variantenvielfalt wirken sich Probleme beim Einfahren immer deutlicher auf die Wirtschaftlickeit aus. Am IFW arbeiten Forscher daran, mit KI-basierter Anomalie-Detektion Werkzeugmaschinen auf Fehler wie Ratterschwingungen zu untersuchen, die teils vorher sogar unbekannt waren.
Bild 1: Ratterdetektion durch eine One-Class-SVM
Bild 1: Ratterdetektion durch eine One-Class-SVM

Durch die Auswertung von Prozessdaten aus Werkzeugmaschinen lassen sich Fehler etwa beim Einfahren früh erkennen. Durch die Digitalisierung der Fertigung stehen dafür immer größere Datenmengen zur Verfügung. Um die Datenqualität zu verbessern, werden zudem oft Sensorsysteme in die Maschinen integriert. Die Vielzahl der erfassten Prozesssignale eröffnet dabei neue Möglichkeiten für die Überwachung. So können mit maschinellem Lernen (ML) auch komplexe Zusammenhänge und Muster aus großen Datenmengen abgebildet werden. Weit verbreitete überwachte ML-Methoden benötigen zum Lernen sowohl Daten von fehlerfreien Prozessen als auch Daten von Fehlerfällen. Um zu lernen, benötigen die Algorithmen zudem Informationen darüber, wo sich welche Fehlerfälle im Datensatz befinden. In der Produktion sind allerdings nicht alle Fehlerfälle im Voraus bekannt und Daten zu den einzelnen Fehlern liegen häufig nicht in ausreichender Menge vor. Deshalb ist überwachtes Lernen für die Detektion, insbesondere von unbekannten Fehlern, nur bedingt für den industriellen Einsatz geeignet.

Training ohne Vorwissen

Der Anomalie-Detektion-Ansatz aus dem Gebiet des unüberwachten Lernens benötigen hingegen kein solches Vorwissen. Durch das Training mit Daten aus fehlerfreien Prozessen erlernt die Anomalie-Detektion charakteristische Muster und Zusammenhänge in den Signalen. Die trainierten Modelle erkennen Abweichungen (Anomalien) von den gelernten Mustern und können somit sogar unbekannte Prozessfehler detektieren. Das Institut für Fertigungstechnik und Werkzeugmaschinen der Leibniz Universität Hannover (IFW) erforscht daher den Einsatz der Anomalie-Detektion zur Überwachung der Einzelteil- und Kleinserienfertigung.

Dabei werden die Prozesse aus unterschiedlichen Perspektiven betrachtet. Auf der untersten Ebene, der Lupenperspektive, stehen einzelne Signalausschnitte. Signalausschnitte fokussieren kurzweilige Effekte, etwa ein frequenzabhängiges Rattern. Die Vogelperspektive umfasst ganze Prozesssegmente, etwa eine einzelne Bohrung oder ein einzelner Längsdrehprozess. Über den Vergleich einzelner Segmente können auch langsame Veränderungen, beispielsweise durch Werkzeugverschleiß, erkannt werden. Die Betrachtung des gesamten Segments ermöglicht eine bessere Einordnung von Signalveränderungen, wodurch Fehlalarme vermieden werden. Die Übertragung des gelernten Wissens zwischen unterschiedlichen Maschinen wird in der Satellitenperspektive adressiert.

Die Lupenperspektive

Selbsterregte Ratterschwingungen sind eine große Herausforderungen in der Zerspanung, da sie die Oberflächenqualität der Werkstücke verschlechtern sowie zu einem erhöhten Werkzeug- und Komponentenverschleiß führen. Bisher werden zur Erkennung von Ratterschwingungen hauptsächlich schwellwertbasierte Methoden eingesetzt. Dabei werden Merkmale im Zeit- oder Frequenzbereich einzelner Signale berechnet. Sobald der Wert eines Merkmals den vorab definierten Schwellwert überschreitet, wird Rattern detektiert. Doch wie sieht ein geeigneter Schwellenwert aus? Ist er zu niedrig gewählt, kommt es zu Fehlalarmen, während ein zu hoher Wert dazu führt, dass Fehler erst zu spät oder gar nicht erkannt werden. Zudem können nur einzelne Merkmale betrachtet werden, die Zusammenhänge zwischen unterschiedlichen Signalen und Merkmalen gehen verloren.

Alle Signale zusammenführen

Um diesen Herausforderungen zu begegnen, wurde am IFW eine One-Class-Support-Vector-Maschine (SVM) zur Ratterdetektion eingesetzt. Diese kann Informationen aus unterschiedlichen Datenquellen zu einem sogenannten Score zusammenzuführen und Schwellwerte selbständig bestimmen. Als Eingangsgrößen für die SVM wurden die Signale von drei am Spindelschlitten applizierten Halbleiter-Dehnungsmessstreifen (H.-DMS) und die Antriebsströme der Maschinenachsen verwendet. Trainiert wurde die SVM mit den Daten von 15 ratterfreien Flankenfräsprozessen in Aluminium mit variierenden Vorschubgeschwindigkeiten, Schnitttiefen, -breiten und Drehzahlen. Durch eine Stufe im Werkstück wird nun die Schnitttiefe erhöht, sodass Ratterschwingungen entstehen. Die SVM erkennt das Rattern bevor Rattermarken auf dem Werkstück zu sehen sind. Plötzlich auftretende Prozessfehler wie Ratterschwingungen können also in der Lupenperspektive auch ohne aufwendige Berechnungen von Merkmalen und die manuelle Bestimmung von Schwellwerten erkannt werden.

Die Vogelperspektive

In der Vogelperspektive werden Prozesse durch eine Segmentierung in einzelne Prozessabschnitte unterteilt. Für die Überwachung werden dann ähnliche Prozesssegmente gemeinsam betrachtet. In Abbildung 2 ist der Verlauf der Schnittkraft in x-Richtung (Bild 2b) bei der Drehbearbeitung zu sehen. Bearbeitet wird dabei ein hybrides Bauteil (Bild 2a), das zum Teil aus Aluminium und zum Teil aus Stahl besteht. Für die Ermittlung der Schnittkraft wurden dabei im Werkzeugrevolver integrierte Dehnungsmessstreifen verwendet. Zur Simulation eines Materialfehlers wurde in das Werkstück eine Nut eingebracht, die durch einen Kraftabfall im Signal ersichtlich ist. Die Bearbeitung der unterschiedlichen Werkstoffe zeigt sich ebenfalls am Amplitude des Signals.

Bild 2: Anomalie-Detektion bei der Drehbearbeitung von hybriden Bauteilen
Bild 2: Anomalie-Detektion bei der Drehbearbeitung von hybriden BauteilenBild: IFW

Um die Signaländerungen durch den Fehler von unkritischen Signaländerungen zu unterscheiden, ist eine segmentweise Betrachtung des Signalverlaufs notwendig. Als Segmentgrenze wird dabei der Zeitpunkt gewählt, in dem der Übergang zwischen den beiden Werkstoffen stattfindet. Zur Fehlerdetektion wird anschließend ein Hampel-Filter innerhalb der einzelnen Segmente eingesetzt. Dieser analysiert die Signalvarianz in den Segmenten und erkennt Abweichungen im Signalverlauf. Dadurch können die im Werkstück eingebrachten Fehler erkannt werden, ohne dass Fehlalarme durch die Werkstoffübergänge ausgelöst werden (Bild 2b).

Verschleiß ohne Daten erkennen

Die Überwachung langsamer Veränderungen, wie Werkzeugverschleiß, ist eine weitere Anwendung der Anomalie-Detektion in der Vogelperspektive. Dafür wurden die einzelnen Signalsegmente aus dem Drehprozess zunächst durch ihren jeweiligen Mittelwert normiert. Anschließend wurden statistische Merkmale, wie die Signalvarianz und der Signalmedian, für den gesamten Prozess berechnet und durch eine Hauptkomponentenanalyse (PCA) vereinfacht. Mit den Signalen von neun Prozessen mit arbeitsscharfem Werkzeug wurde eine One-Class-SVM angelernt. Bild 2c zeigt die dabei von der SVM gebildeten Clustergrenzen. Die Prozesse mit verschlissenen Wendeschneidplatten (rot) liegen außerhalb dieser Clustergrenzen und werden somit als Fehler erkannt. Durch die Anomalie-Detektion lässt sich Werkzeugverschleiß also selbst dann erkennen, wenn Daten von Prozessen mit verschlissenen Werkzeugen als Referenz fehlen.

Die Satellitenperspektive

Oft reicht es nicht aus, Prozesse nur an einer Maschine überwachen zu können. In der Satellitenperspektive wird daher die komplette Maschinenhalle mit mehreren Werkzeugmaschinen betrachtet. Um Wissen zwischen Maschinen zu übertragen, werden zuerst die prozessspezifischen Anteile in den überwachten Signalen von den maschinenspezifischen Anteilen isoliert. Anschließend wird eine Anomalie-Detektion mit den Prozessdaten mehrerer Maschinen trainiert. Das Detektionsmodell wird daraufhin an einer anderen, unabhängigen Maschine zur Überwachung eingesetzt.

Bild 3: Transfer von Wissen zwischen Maschinen für die Überwachung
Bild 3: Transfer von Wissen zwischen Maschinen für die ÜberwachungBild: IFW

Bild 3 zeigt den Wissenstransfer beispielhaft für vier baugleiche Maschinen. Als Prozess wird das Quer-Plandrehen und als Signal das einfach verfügbare Antriebsmoment der Vorschubachse (X-Achse) betrachtet. Zur Überwachung wird der Prozess in einzelne Drehoperationen segmentiert. Jedes Segment wird durch den Mittelwert und die Schiefe charakterisiert. Mit diesen Kennwerten von 130 fehlerfreien Drehoperationen wurde ein Modell zur Anomalie-Detektion trainiert (weiße Datenpunkte). Zum Aufspüren der Anomalien kommt ein Verfahren basierend auf multivariater Statistik (minimum covariance determinant) zum Einsatz. Im Trainingsdatensatz variierten dabei Schnitttiefe und -geschwindigkeit. Beim Test an der Zielmaschine erkannte das Modell zehn von zehn fehlerhaften Prozessen mit Einstichen, die einen Werkzeugbruch simulieren (rote Datenpunkte). Auch die weiteren 65 fehlerfreien Prozesse (grüne Datenpunkte) klassifizierte die Anomalie-Detektion an der Zielmaschine korrekt. Entsprechend traten keine Fehlalarme auf. Wissen zur Prozessüberwachung ist demnach offenkundig zwischen Maschinen übertragbar.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: EVO Informationssysteme GmbH
Bild: EVO Informationssysteme GmbH
Produktion und Logistik gemeinsam digitalisieren

Produktion und Logistik gemeinsam digitalisieren

EVO Informationssysteme kooperiert mit Keyence Deutschland: Nach umfangreichen Tests und dem praktischen Einsatz bei Kunden hat die Kombination der intuitiven EVO-Apps mit den leistungsfähigen Industrie-Scannern von Keyence überzeugt. Der Einsatz der nutzerfreundlichen EVO Apps und die Scanleistung unter widrigen Industriebedingungen gewährleisten die zuverlässige Identifizierung und Prozessdokumentation in Wareneingang, Produktion und Lager.

Bild: Hartmetall-Werkzeugfabrik Paul Horn GmbH – Nico Sauermann
Bild: Hartmetall-Werkzeugfabrik Paul Horn GmbH – Nico Sauermann
Aluminium prozesssicher zerspanen

Aluminium prozesssicher zerspanen

Bohren, Reiben, Stechen und Fräsen: Der Werkzeugspezialist Paul Horn aus Tübingen bietet ein breites Portfolio an optimierten Werkzeugen für die wirtschaftliche Zerspanung des Leichtmetalls Aluminium. Nach Stahlwerkstoffen ist Aluminium das meist verwendete Metall. In der zerspanenden Industrie zählen die Al-Legierungen zu den leicht zu bearbeitenden Werkstoffen. Nichtsdestotrotz ist es möglich, dass bei der Bearbeitung des weichen Metalls schnell ein ‚harter Brocken‘ entsteht: Verklebungen, Aufbauschneiden und Spänestau bis zum Werkzeugbruch kommen vor. Mit den richtigen Werkzeugen, Schneidstoffen, Schnittdaten sowie der passenden Menge und Art des Kühlschmierstoffes lassen sich Al-Legierungen prozesssicher zerspanen.

Bild: Zentralverband Oberflächentechnik e.V.
Bild: Zentralverband Oberflächentechnik e.V.
ZVO-Jahresbericht 2021

ZVO-Jahresbericht 2021

Der Zentralverband Oberflächentechnik e.V. bringt seinen Jahresbericht 2021 heraus. Mit der aktuellen Publikation berichtet der ZVO erneut über seine Arbeit und die Entwicklung im abgelaufenen Kalenderjahr. Der Bericht dokumentiert die vielfältigen Aufgaben und Tätigkeiten des ZVO und der Branche, insbesondere der wirtschafts-, umwelt-, energie- und bildungspolitischen Interessenvertretung sowie die Branchenentwicklung. 

Bild: Sodick Deutschland GmbH
Bild: Sodick Deutschland GmbH
Metav 2022 als Heimspiel für EDM-Spezialist

Metav 2022 als Heimspiel für EDM-Spezialist

EDM-Spezialist Sodick ist vom 21. bis zum 24. Juni auf der Metav 2022 in Düsseldorf mit von der Partie. In Halle 16 am Stand F38 kann mit drei Maschinen ein kleiner Ausschnitt aus dem breiten Sortiment an Erodiermaschinen präsentiert werden: eine Drahterodiermaschine VL400Q, eine Senkerodiermaschine AD35L (im Bild ist eine AD55L zu sehen) und eine K1C für das Hochgeschwindigkeits-Startlochbohren

Bild: Klingelnberg GmbH
Bild: Klingelnberg GmbH
Fachbericht: Modified Crowning

Fachbericht: Modified Crowning

Was soll sich schon bei einem Achsgetriebe ändern, wenn statt eines Verbrennungsmotors ein elektrischer Antrieb mit gleicher Nennleistung eingebaut ist? Auf den ersten Blick sind keine Änderung im Lastenheft des Achsgetriebes zu vermuten – wäre da nicht das Energiemanagement eines elektrischen Antriebsstranges. Klingelnberg kennt sich mit dem Thema bestens aus.

Bild: Laserhub GmbH
Bild: Laserhub GmbH
Beschaffungsplattform für industrielle Metallteile

Beschaffungsplattform für industrielle Metallteile

Die Firma Laserhub, Betreiber der gleichnamigen Online-Plattform für die Beschaffung maßgeschneiderter Blech- und Drehteile, gibt den erfolgreichen Abschluss ihrer Series-B-Finanzierungsrunde bekannt. Als erster internationaler Investor führt Evli Growth Partners aus Finnland die Runde an. Als Co-Investoren schlossen sich mit Fuse Venture Partners aus dem Vereinigten Königreich und FJ Labs aus den USA zwei weitere internationale Fonds an.

Bild: ACE Stoßdämpfer GmbH
Bild: ACE Stoßdämpfer GmbH
Selbsteinstellende Industriestoßdämpfer in Edelstahl

Selbsteinstellende Industriestoßdämpfer in Edelstahl

ACE Stoßdämpfer erweitert die erfolgreiche Magnum-Serie und präsentiert damit eine konstruktionstechnische Besonderheit: Das Unternehmen aus Langenfeld im Rheinland bietet jetzt erstmals selbsteinstellende Industriestoßdämpfer mit Gewinde M64 und einem Hub von 150mm serienmäßig in einer Edelstahlausführung an, deren Hauptkomponenten komplett in Deutschland entwickelt und gefertigt werden.

Bild: Schaeffler Technologies AG & Co. KG
Bild: Schaeffler Technologies AG & Co. KG
Geschäftsfeld wegen Neuausrichtung umbenannt

Geschäftsfeld wegen Neuausrichtung umbenannt

Aus Industrie 4.0 wird Schaeffler Lifetime Solutions: Die Umbenennung erfolgt aufgrund der Neuausrichtung des Leistungsportfolios, das in den vergangenen Jahren sukzessive von reinen Produktlösungen hin zu ganzheitlichen Dienstleistungen erweitert wurde. Der neue Name ‚Schaeffler Lifetime Solutions‘ sowie der Subclaim ‚Keep your machines rolling‘ symbolisiert dabei den Anspruch, Wünsche und Bedürfnisse von Instandhaltungs- und Werksleitern über die gesamte Lebensdauer einer Maschine hinweg zu bedienen.

Anzeige

Anzeige

Anzeige